One - One Code All

Blog Content

让Python代码更快运行的 5 种方法

Python   2011-11-01 00:00:39

PyPy

在选择CPython的简易替代语言时,PyPy无疑是最佳之选(如Quora就是由它编写而成)。由于与现有Python代码保持高度兼容性,PyPy也是默认程序运行时的一个很好选择。

PyPy使用了Just-in-Time(JIT)即时编译器,即动态编译器,与静态编译器(如gcc,java等)不同,它是利用程序运行的过程的数据进行优化,拥有同谷歌Chrome V8 JavaScript引擎相同的语言加速技术。

相关链接:http://pypy.org/



Pyston

Pyston是一款Dropbox推出的新的基于JIT的Python实现,使用LLVM编译器实现代码解析与转换。

相关链接:https://github.com/dropbox/pyston



Nuitka

Nuitka 是一个Python的替代品,一些团队正用它做完全的Python编译工具,并尝试将Python代码转译为其它可高速运行的编程语言。Nuitka(nuitka.net)可以将python代码转换为C++代码,然后编译为可执行文件,并通过直接调用python的api的方式实现从解析语言到编译语言的转换,并且在转换到C++的过程中直接使用python的解释器,可以保证100%的语法兼容。虽然这限制了它的可移植性,但不可否认这个转换的速度获得了肯定。

相关链接:http://nuitka.net/



Cython

Cython是Python 的C语言扩展。准确说Cython是单独的一门语言,专门用来写在Python里面import用的扩展库。实际上Cython的语法基本上跟Python一致,而Cython有专门的编译器:先将 Cython代码转变成C(自动加入了一大堆的C-Python API),然后使用C编译器编译出最终的Python可调用的模块。不过Cython的缺点是,你并不能真正编写Python代码,这样一来,现有代码将不会完全自动转移成功。

也就是说,Cython在提速方面有很大优势,它是一个用来快速生成Python扩展模块(extention module)的工具。而在Cython,C里的类型,如int,float,long,char*等都会在必要的时候自动转成python对象,或者从python对象转成C类型,在转换失败时会抛出异常,这正是Cython最神奇的地方。另外,Cython对回调函数的支持也很好。总之,如果你有写python扩展模块的需求,那么Cython真的是一个很好的工具。

相关链接:http://cython.org/



Numba

Numba综合了前两种方法,是Cython的竞争项目。同样的,numba把Python源码通过LLVMPy生成JIT后的.so文件来加速。不同点在于,Numba是以JIT为主的,加速对源码的侵入性较小。而Cython则重点在加速高性能Python模块的开发上,不依赖LLVMPy项目。此外numba还很不成熟,目前兼容性相当差。

相关链接:http://numba.pydata.org/ 

Python创始人Guido van Rossum坚信Python的许多性能问题可以归结为语言的使用不当。例如,对于CPU消耗过高的处理,可以通过一些方法来加速Python运行——使用NumPy、使用多处理器扩展、或借助外部C代码从而避免全局解释器锁(GIL)——Python缓慢的根源。但由于在Python中还没有可行的GIL替代语言,Python仍将在短期落后于其他语言——甚至可能更长时间。


上一篇:python中pandas的dataframe给Nan值更改为0
下一篇:python日期之计算两个日期相隔天数

The minute you think of giving up, think of the reason why you held on so long.