先举例:
df.rolling(3, min_periods=1).sum()
df.rolling(3, min_periods=1).mean()
在建模过程中,我们常常需要需要对有时间关系的数据进行整理。比如我们想要得到某一时刻过去30分钟的销量(产量,速度,消耗量等),传统方法复杂消耗资源较多,pandas提供的rolling使用简单,速度较快。
函数原型和参数说明
DataFrame.rolling(window, min_periods=None, freq=None, center=False, win_type=None, on=None, axis=0, closed=None)
window:表示时间窗的大小,注意有两种形式(int or offset)。如果使用int,则数值表示计算统计量的观测值的数量即向前几个数据。如果是offset类型,表示时间窗的大小。pandas offset相关可以参考这里。
min_periods:最少需要有值的观测点的数量,对于int类型,默认与window相等。对于offset类型,默认为1。
freq:从0.18版本中已经被舍弃。
center:是否使用window的中间值作为label,默认为false。只能在window是int时使用。
# 为方便观察,并列排列
df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]})
df.rolling(3, min_periods=1).sum()
df.rolling(3, min_periods=1, center=True).sum()
B B1 B2
0 0.0 0.0 1.0
1 1.0 1.0 3.0
2 2.0 3.0 3.0
3 NaN 3.0 6.0
4 4.0 6.0 4.0
win_type:窗口类型,默认为None一般不特殊指定,了解支持的其他窗口类型,参考这里。
on:对于DataFrame如果不使用index(索引)作为rolling的列,那么用on来指定使用哪列。
closed:定义区间的开闭,曾经支持int类型的window,新版本已经不支持了。对于offset类型默认是左开右闭的即默认为right。可以根据情况指定为left both等。
axis:方向(轴),一般都是0。
举例
一个简单的场景,从A向B运送东西,我们想看一下以3秒作为一个时间窗运送的量。
# A地有两个仓库,都运往B。
df = pd.DataFrame({'1': ['A1', 'A2', 'A1', 'A2', 'A2', 'A1', 'A2'],
'2': ['B1', 'B1', 'B1', 'B1', 'B1', 'B1', 'B1'],
'num': [1,2,1,3,4,2,1]},
index = [pd.Timestamp('20130101 09:00:00'),
pd.Timestamp('20130101 09:00:01'),
pd.Timestamp('20130101 09:00:02'),
pd.Timestamp('20130101 09:00:03'),
pd.Timestamp('20130101 09:00:04'),
pd.Timestamp('20130101 09:00:05'),
pd.Timestamp('20130101 09:00:06')])
# 1 2 num
# 2013-01-01 09:00:00 A1 B1 1
# 2013-01-01 09:00:01 A2 B1 2
# 2013-01-01 09:00:02 A1 B1 1
# 2013-01-01 09:00:03 A2 B1 3
# 2013-01-01 09:00:04 A2 B1 4
# 2013-01-01 09:00:05 A1 B1 2
# 2013-01-01 09:00:06 A2 B1 1
使用rolling进行计算
# 首先我们先对groupby进行聚合(如果只有从A->B,那么不用聚合一个rolling就可以)
# 以9:00:04秒为例,由于时间窗是3s,默认的closed是right,所以我们相加04,03,02秒的num,共有4+3+0=7
df.groupby(['1', '2'])['num'].rolling('3s').sum()
# 1 2
# A1 B1 2013-01-01 09:00:00 1.0
# 2013-01-01 09:00:02 2.0
# 2013-01-01 09:00:05 2.0
# A2 B1 2013-01-01 09:00:01 2.0
# 2013-01-01 09:00:03 5.0
# 2013-01-01 09:00:04 7.0
# 2013-01-01 09:00:06 5.0
# Name: num, dtype: float64
由于使用groupby,所以最后的结果是MultiIndex,想使用正常格式在DataFrame上使用reset_index()即可。
它都是以rolling打头的函数,后接具体的函数,来显示该移动窗口函数的功能。...
最近经常使用移动窗口函数,觉得很方便,功能强大,代码简单,故将pandas中的移动窗口函数都做介绍。它都是以rolling打头的函数,后接具体的函数,来显示该移动窗口函数的功能。
rolling_count 计算各个窗口中非NA观测值的数量
函数
pandas.rolling_count(arg, window, freq=None, center=False, how=None)
arg : DataFrame 或 numpy的ndarray 数组格式
window : 指移动窗口的大小,为整数
freq :
center : 布尔型,默认为False, 指取中间的
how : 字符串,默认为“mean”,为down- 或re-sampling
import pandas as pd
import numpy as np
df = pd.DataFrame({'key1':['a','a','b','b','a'],
'key2':['one','two','one','two','one'],
'data1':np.nan,
'data2':np.random.randn(5)})
pd.rolling_count(df[['data1','data2']],window = 3)
rolling_sum 移动窗口的和
pandas.rolling_sum(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)
arg : 为Series或DataFrame
window : 窗口的大小
min_periods : 最小的观察数值个数
freq :
center : 布尔型,默认为False, 指取中间的
how : 取值的方式,默认为None
pd.rolling_sum(df,window = 2,min_periods = 1)
rolling_mean 移动窗口的均值
pandas.rolling_mean(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)
rolling_median 移动窗口的中位数
pandas.rolling_median(arg, window, min_periods=None, freq=None, center=False, how='median', **kwargs)
rolling_var 移动窗口的方差
pandas.rolling_var(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)
rolling_std 移动窗口的标准差
pandas.rolling_std(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)
rolling_min 移动窗口的最小值
pandas.rolling_min(arg, window, min_periods=None, freq=None, center=False, how='min', **kwargs)
rolling_max 移动窗口的最大值
pandas.rolling_min(arg, window, min_periods=None, freq=None, center=False, how='min', **kwargs)
rolling_corr 移动窗口的相关系数
pandas.rolling_corr(arg1, arg2=None, window=None, min_periods=None, freq=None, center=False, pairwise=None, how=None)
rolling_corr_pairwise 配对数据的相关系数
等价于: rolling_corr(…, pairwise=True)
pandas.rolling_corr_pairwise(df1, df2=None, window=None, min_periods=None, freq=None, center=False)
rolling_cov 移动窗口的协方差
pandas.rolling_cov(arg1, arg2=None, window=None, min_periods=None, freq=None, center=False, pairwise=None, how=None, ddof=1)
rolling_skew 移动窗口的偏度(三阶矩)
pandas.rolling_skew(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)
rolling_kurt 移动窗口的峰度(四阶矩)
pandas.rolling_kurt(arg, window, min_periods=None, freq=None, center=False, how=None, **kwargs)
rolling_apply 对移动窗口应用普通数组函数
pandas.rolling_apply(arg, window, func, min_periods=None, freq=None, center=False, args=(), kwargs={})
rolling_quantile 移动窗口分位数函数
pandas.rolling_quantile(arg, window, quantile, min_periods=None, freq=None, center=False)
rolling_window 移动窗口
pandas.rolling_window(arg, window=None, win_type=None, min_periods=None, freq=None, center=False, mean=True, axis=0, how=None, **kwargs)
ewma 指数加权移动
ewma(arg[, com, span, halflife, ...])
ewmstd 指数加权移动标准差
ewmstd(arg[, com, span, halflife, ...])
ewmvar 指数加权移动方差
ewmvar(arg[, com, span, halflife, ...])
ewmcorr 指数加权移动相关系数
ewmcorr(arg1[, arg2, com, span, halflife, ...])
ewmcov 指数加权移动协方差
ewmcov(arg1[, arg2, com, span, halflife, ...])