夏普比率
介绍:夏普比率(Sharpe Ratio),又被称为夏普指数 --- 基金绩效评价标准化指标。夏普比率在现代投资理论的研究表明,风险的大小在决定组合的表现上具有基础性的作用。风险调整后的收益率就是一个可以同时对收益与风险加以考虑的综合指标,以期能够排除风险因素对绩效评估的不利影响。夏普比率就是一个可以同时对收益与风险加以综合考虑的三大经典指标之一。 投资中有一个常规的特点,即投资标的的预期报酬越高,投资人所能忍受的波动风险越高;反之,预期报酬越低,波动风险也越低。所以理性的投资人选择投资标的与投资组合的主要目的为:在固定所能承受的风险下,追求最大的报酬;或在固定的预期报酬下,追求最低的风险。
核心思想:理性的投资者将选择并持有有效的投资组合,即那些在给定的风险水平下使期望回报最大化的投资组合,或那些在给定期望回报率的水平上使风险最小化的投资组合。解释起来非常简单,他认为投资者在建立有风险的投资组合时,至少应该要求投资回报达到无风险投资的回报,或者更多。
公式:sharperatio = [E(Rp)-Rf]/σp = (投资组合预期报酬率 - 无风险利率 )/投资组合的标准差。
公式理解:目的是计算投资组合每承受一单位总风险,会产生多少的超额报酬。比率依据资产配置线(Capital Allocation Line,CAL)的观念而来,是市场上最常见的衡量比率。当投资组合内的资产皆为风险性资产时,适用夏普比率。夏普指数代表投资人每多承担一分风险,可以拿到几分超额报酬;若为正值,代表基金报酬率高过波动风险;若为负值,代表基金操作风险大过于报酬率。这样一来,每个投资组合都可以计算Sharpe Ratio,即投资回报与多冒风险的比例,这个比例越高,投资组合越佳。
公式举例:假如国债的回报是3%,而您的投资组合预期回报是15%,您的投资组合的标准偏差是6%,那么用15%-3%,可以得出12%(代表您超出无风险投资的回报),再用12%/6%=2,代表投资者风险每增长1%,换来的是2%的多余收益。
注意事项:
- 夏普比率在运用中应该注意的问题夏普比率在计算上尽管非常简单,但在具体运用中仍需要对夏普比率的适用性加以注意:
- 用标准差对收益进行风险调整,其隐含的假设就是所考察的组合构成了投资者投资的全部。因此只有在考虑在众多的基金中选择购买某一只基金时,夏普比率才能够作为一项重要的依据;
- 使用标准差作为风险指标也被人们认为不很合适的。
- 夏普比率的有效性还依赖于可以以相同的无风险利率借贷的假设;
- 夏普比率没有基准点,因此其大小本身没有意义,只有在与其他组合的比较中才有价值;
- 夏普比率是线性的,但在有效前沿上,风险与收益之间的变换并不是线性的。因此,夏普指数在对标准差较大的基金的绩效衡量上存在偏误;
- 夏普比率未考虑组合之间的相关性,因此纯粹依据夏普值的大小构建组合存在很大问题;
- 夏普比率与其他很多指标一样,衡量的是基金的历史表现,因此并不能简单地依据基金的历史表现进行未来操作。
- 计算上,夏普指数同样存在一个稳定性问题:夏普指数的计算结果与时间跨度和收益计算的时间间隔的选取有关。
具体应用:夏普比率的计算非常简单,用基金净值增长率的平均值减无风险利率再除以基金净值增长率的标准差就可以得到基金的夏普比率。它反映了单位风险基金净值增长率超过无风险收益率的程度。如果夏普比率为正值,说明在衡量期内基金的平均净值增长率超过了无风险利率,在以同期银行存款利率作为无风险利率的情况下,说明投资基金比银行存款要好。夏普比率越大,说明基金的单位风险所获得的风险回报越高。夏普比率为负时,按大小排序没有意义。 夏普比率以资本市场线作为评价基准,对投资绩效作出评估。