One - One Code All

Blog Content

GPU编程002: GPU主流编程接口

并行计算   2015-08-13 08:05:26

计算模型:

集群计算是指通过将多个性能一般的计算机组成一个运算网络,达到高性能计算的目的。这是一种典型的多点计算模型。

而 GPU 的本质,也同样是多点计算模型。其相对于当今比较火的Hadoop/Spark集群来说:“点”由单个计算机变成了 单个SM (流处理器簇),通过网络互连变成了通过显存互连 (多点计算模型中点之间的通信永远是要考虑的重要问题)。

主流GPU编程接口

1. CUDA

官网地址:https://developer.nvidia.com/cuda-downloads

是英伟达公司推出的,专门针对 N 卡进行 GPU 编程的接口。文档资料很齐全,几乎适用于所有 N 卡。

CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。 开发人员现在可以使用C语言来为CUDA™架构编写程序,C语言是应用最广泛的一种高级编程语言。所编写出的程序可以在支持CUDA™的处理器上以超高性能运行。CUDA3.0已经开始支持C++和FORTRAN。

NVIDIA CUDA工具包是一种针对支持CUDA功能的GPU(图形处理器)的C语言开发环境。
CUDA开发环境包括:
nvcc C语言编译器
·适用于GPU(图形处理器)的CUDA FFT和BLAS库。 [1]
分析器
·适用于GPU(图形处理器)的gdb调试器(在2008年3月推出alpha版)
·CUDA运行时(CUDA runtime)驱动程序(目前在标准的NVIDIA GPU驱动中也提供)。 [1]
CUDA编程手册
CUDA开发者软件开发包(SDK)提供了一些范例(附有源代码),以帮助使用者开始CUDA编程。这些范例包括:
· 并行双调排序
· 矩阵乘法
· 矩阵转置
· 利用计时器进行性能评价
· 并行大数组的前缀和(扫描)
· 图像卷积
· 使用Haar小波的一维DWT
· OpenGL和Direct3D图形互操作示例
· CUDA BLAS和FFT库的使用示例
· CPU-GPU C—和C++—代码集成
· 二项式期权定价模型
· Black-Scholes期权定价模型
· Monte-Carlo期权定价模型
· 并行Mersenne Twister(随机数生成)
· 并行直方图
· 图像去噪
· Sobel边缘检测滤波器
· MathWorks MATLAB®
新的基于1.1版CUDA的SDK范例现在也已经发布了。 [1]
技术功能
· 在GPU(图形处理器)上提供标准C编程语言
· 为在支持CUDA的NVIDIA GPU(图形处理器)上进行并行计算而提供了统一的软硬件解决方案
· CUDA兼容的GPU(图形处理器)包括很多:从低功耗的笔记本上用的GPU到高性能的,多GPU的系统。
· 支持CUDA的GPU(图形处理器)支持并行数据缓存和线程执行管理器
· 标准FFT(快速傅立叶变换)和BLAS(基本线性代数子程序)数值程序库
· 针对计算的专用CUDA驱动
· 经过优化的,从中央处理器(CPU)到支持CUDA的GPU(图形处理器)的直接上传、下载通道
· CUDA驱动可与OpenGL和DirectX图形驱动程序实相互操作
· 支持Linux 32位/64位以及Windows XP 32位/64位 操作系统
· 为了研究以及开发语言的目的,CUDA提供对驱动程序的直接访问,以及汇编语言级的访问。

2. Open CL

开源的 GPU 编程接口,使用范围最广,几乎适用于所有的显卡。

但相对 CUDA,其掌握较难一些,建议先学 CUDA,在此基础上进行 Open CL 的学习则会非常简单轻松。

OpenCL(全称Open Computing Language,开放运算语言)是第一个面向异构系统通用目的并行编程的开放式、免费标准,也是一个统一的编程环境,便于软件开发人员为高性能计算服务器、桌面计算系统、手持设备编写高效轻便的代码,而且广泛适用于多核心处理器(CPU)、图形处理器(GPU)、Cell类型架构以及数字信号处理器(DSP)等其他并行处理器,在游戏、娱乐、科研、医疗等各种领域都有广阔的发展前景。

OpenCL是一个为异构平台编写程序的框架,此异构平台可由CPU,GPU或其他类型的处理器组成。OpenCL由一门用于编写kernels (在OpenCL设备上运行的函数)的语言(基于C99)和一组用于定义并控制平台的API组成。OpenCL提供了基于任务分割和数据分割的并行计算机制。


3. DirectCompute

微软开发出来的 GPU 编程接口。功能很强大,学习起来也最为简单,但只能用于 Windows 系统,在许多高端服务器都是 UNIX 系统无法使用。

总结,这几种接口各有优劣,需要根据实际情况选用。但它们使用起来方法非常相近,掌握了其中一种再学习其他两种会很容易。


上一篇:GPU编程001: GPU介绍
下一篇:GOAI发布用于 GPU分析的Python 数据框架

The minute you think of giving up, think of the reason why you held on so long.